ATM phosphorylates histone H2AX in response to DNA double-strand breaks.

نویسندگان

  • S Burma
  • B P Chen
  • M Murphy
  • A Kurimasa
  • D J Chen
چکیده

A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...

متن کامل

γ-H2AX as a protein biomarker for radiation exposure response in ductal carcinoma breast tumors: Experimental evidence and literature review

Background: H2AX is a histone variant that is systematically found and ubiquitously distributed throughout the genome. DNA double-strand breaks (DSBs) induce phosphorylation of H2AX at serine 139 (γH2AX), an immunocytochemical assay with antibodies recognizing γH2AX has become the gold standard for the detection of DSBs. The importance of this assay to investigate different individu...

متن کامل

Expression of phosphorylated histone H2AX in blood lymphocytes of patients undergoing angiographic procedures following exposure to X‐rays

Introduction: Coronary angiography is a Diagnostic-Therapeutic method involving ionizing radiation. This method causes to DNA damage with form double stranded breaks which is followed by the phosphorylation of the histone, H2AX. H2AX is a key factor in the repair process of damaged DNA which will accumulate to damage sites. In human cells, H2AX constitutes about 10% of the H2A ...

متن کامل

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Histone H2AX phosphorylation independent of ATM after X-irradiation in mouse liver and kidney in situ.

Histone H2AX undergoes phosphorylation at Ser-139 (gamma-H2AX) rapidly in response to DNA double-strand breaks (DSBs) induced by ionizing radiation. The post-translational modification of H2AX plays a central role in responses to radiation, including the repair of DSBs. Although ataxia telangiectasia mutated (ATM) kinase phosphorylates Ser-139 of H2AX in vitro, the post-translational modificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 45  شماره 

صفحات  -

تاریخ انتشار 2001